هندسة إقليدية · مضلع · ضلع · زاوية · مثلث · دائرة
كما تحسب بدلالة طول ضلعه وجيب إحدى زواياه α أو β بالعلاقة: :
المعين هو من الأشكال الهندسية الرباعية؛ أي أنه يتكون من أربعة أضلاع، وهو يشبه متوازي الأضلاع، لكن يختلف عنه في أن أطوال أضلاعه تكون متساويةً، له أربع زاويا، كل زاويتين متقابلتين فيه تكون متساويتين، وكل ضلعين متقابلين فيه متوازيان.
عندما يكون القطر الأقصر مساويًا لطول أحد ضلعي المعين، فإن اثنين من المثلثات المتشكلة بين الأقطار سيكونا متطابقين.
الحساب بمعرفة طولَي القُطرَين، وذلك عن طريق القانون التالي:
قطراه here متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.
يمكن حساب ارتفاع المعين دائماً باستخدام المعادلة العامة لمساحة المعين والتي تربط بين مساحة المعين وارتفاعه وطول ضلعه، وذلك كما يأتي:[٢]
المعين هو عبارةٌ عن شكلٍ هندسيٍّ مضلع ثنائي الأبعاد، يُستخدم في الكثير من المجالات والتطبيقات في مجال الرياضيات وفي حياتنا العلمية والعملية، وتُعرف مساحة المعيّن على أنها المساحة المحدودة بأضلاع المعين، أي داخل محيط المعين، ويوجد عدة قوانين وطرقٍ رياضيةٍ لحساب مساحة المعين سوف نشرحها بالتفصيل في هذا المقال مع ذكر بعض الأمثلة.
الأضلاع المتقابلة متوازية والزوايا المتقابلة متساوية. (لأن هذا الشكل هو في الأساس متوازي أضلاع.)
حساب المساحة من طول أحد الأضلاع، ومن جيب إحدى زاوياه: باستخدام القانون الآتي:
ندعوك للانضمام إلى موقع الرياضيات العربية الإلكتروني حتى نتمكن من التحقق معا من ماهية المعين وكيف يمكن حسابه في الهندسة.
عند توصيل نقاط المنتصف لأنصاف أقطار المعين مع بعضها يمكننا الحصول على معين آخر داخل المعين الأصلي.
ويمكنك ترتيب الفرق بينهما في جدول على لوحة كبيرة يوضح الاختلافات بينهما كالآتي:
ويمكن تمثيل المساحة عن طريق حسابات المثلث بالقانون الآتي:
يمكن رؤية شكل المعين في مجموعةٍ متنوعةٍ من الأشياء في عالمنا المحيط، مثل الطائرة الورقية، ونوافذ السيارة، إشارات المرور، بعض المجوهرات تكون على شكل معينٍ، أيضًا هيكل المباني، المرايا... .
Comments on “5 Essential Elements For المعين”